Preliminary Communication

Synthesis of the novel bifunctional ligand, dicyclopentadienylsulfide $(C_5H_5)_2S$, and its dilithium salt

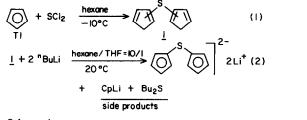
K.A. Rufanov, A.V. Churakov, N.B. Kazennova and D.A. Lemenovskii

Department of Chemistry, Moscow State University, Moscow 119899 (Russian Federation)

(Received March 19, 1994; in revised form March 21, 1994)

Abstract

The dicyclopentadienylsulfide ligand $(C_5H_5)_2S$ (1) was synthesized via reaction of CpTl with SCl_2 . The dilithium salt $Li_2[(C_5H_4)_2S]$ (2) was obtained by the reaction of 1 with ⁿBuLi and was characterized spectroscopically.


Key words: Iron; Cyclopentadienyl; Sulfur; Lithium

Dicyclopentadienes with a one-membered bridge are extensively used in the synthesis and investigation of a wide variety of mono- and binuclear metallocenes [1]. Syntheses of dicyclopentadienes (and their salts) with a bridge other than carbon or silicon are rare, but several examples with germanium and phosphorus containing fragments have been described [2–6]. These dicyclopentadienes are of peculiar interest because they are the starting materials for synthesis of the ansametallocenes, derivatives of early transition metals, which have a specific activity as components of Ziegler-Natta polymerization catalysts.

In the present work we report the synthesis of the dicyclopentadienylsulfide 1 and its dilithium salt 2 (see Scheme 1).

An equimolar amount of SCl_2 (5% hexane solution) was mixed with a suspension of CpTI in hexane under continuous stirring. The reaction was carried out for 3 h at -10° C. The resulting dicyclopentadienylsulfide 1 is a chromatographically pure (TLC-test), readily decomposed pale-yellow oil (yield $\approx 100\%$).

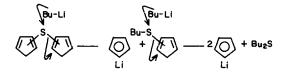
It should be particularly emphasized that all solvents were purified by standard methods and freshly

Scheme 1.

distilled prior to use [7]. CpTl was obtained by a routine procedure [8] and was vacuum sublimed. SCl_2 was distilled twice in a Cl_2 current and twice with a small amount of PCl_3 to remove the traces of Cl_2 [9].

Owing to the fast elementotropic migration process the NMR spectra of 1 are unduly difficult to interpret and are thus of no use for this study.

We have found that dicyclopentadienylsulfide (1) instantaneously reacts with ⁿBuLi [10] in a hexane/ tetrahydrofuran 10/1 mixture forming a white micro-crystalline precipitate of the dilithium salt 2 (see Eq. (2), Scheme 1). The latter was isolated using sealed Schlenk-type vessels.


¹H- and ¹³C-NMR spectra were recorded in tetrahydrofuran- d_8 with a Varian VXR-400 (¹H:400 MHz; ¹³C:100 MHz) NMR spectrometer.

The ¹H-NMR spectrum of **2** is the AA'BB' system of signals of the monosubstituted Cp-anion (J(AB) = 2.8 Hz). The ¹³C-NMR spectrum shows three types of carbon atoms (δ 114.247, 103.422, 103.358).

The NMR data show that the salt 2 is slightly contaminated with CpLi (¹H-NMR : δ 5.695; ¹³C-NMR : δ 109.254, see Figs. 1 and 2).

This fact is explained by the proximity of the rates of the nucleophilic attack of "BuLi upon the sulfur atom and of the deprotonating process of 1 (see Eq. (2), Schemes 1 and 2).

The salt 2 is extremely sensitive to oxygen and/or water; when dry it ignites spontaneously in air.

Scheme 2.

© 1994 - Elsevier Science S.A. All rights reserved

Correspondence to: Prof. D.A. Lemenovskii

⁰⁰²²⁻³²⁸X/94/\$7.00 SSDI 0022-328X(94)24743-3

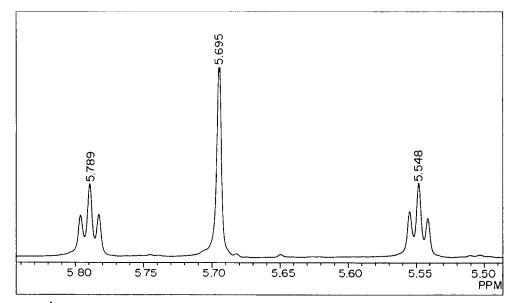


Fig. 1. ¹H-NMR data for 2.

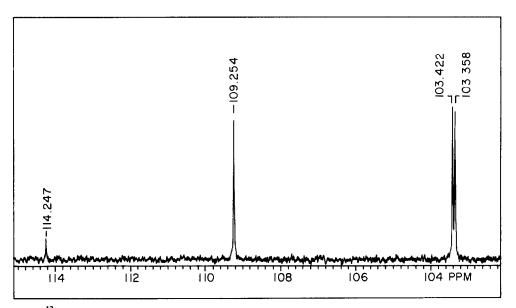


Fig. 2. ¹³C-NMR data for 2.

In subsequent papers we plan to present data on the syntheses of metal complexes with this dicyclopentadienylsulfide bifunctional ligand.

References

 T.E. Bitterwolf, J. Organomet. Chem., 312 (1986) 197; R. Baumann and W. Malisch, J. Organomet. Chem., 303 (1986) C33;
T.E. Bitterwolf, J. Organomet. Chem., 320 (1987) 121; E.W. Abel and S. Moorhouse, J. Organomet. Chem., 29 (1971) 227; D. Schneider and H. Werner, J. Organomet. Chem., 384 (1990) C33; I.E. Nifant'ev, A.V. Churakov, I.F. Urazowski, Sh. G. Mkoyan and L.O. Atovmyan, J. Organomet. Chem., 435 (1992) 37; N. Hoeck, W. Oroschin, G. Paolucci and R.D. Fischer, Angew. Chem., 98 (1986) 748; I.E. Nifant'ev, M.V. Borzov, A.V. Churakov, Sh.G. Mkoyan and L.O. Atovmyan, Organometallics, 11 (1992) 3942.

- 2 H. Kopf and W. Kahl, J. Organomet. Chem., 64 (1974) C37.
- 3 G.K. Anderson and M. Lin, Inorg. Chim. Acta., 142 (1988) 7.
- 4 H. Schumann, L. Esser, J. Loebel, A. Dietrich, D. Helm and X. Ji, Organometallics, 10 (1991) 2585.
- 5 P. Baierweck, U. Simmross and K. Mullen, Chem. Ber., 121 (1988) 2195.

- 6 R.T. Pain, R.W. Light and D.E. Maier, Inorg. Chem., 18 (1979) 368.
- 7 W. Bunge, Methoden der Organischen Chemie (Houben, Weyl-Muller), Vol. I/2, Thieme, Stuttgart, 1959, p. 765.
- 8 F.A. Cotton and L.T. Reynolds, J. Am. Chem. Soc., 80 (1958) 269.
- 9 G. Brauer (Ed.), Handbuch der Praparativen Anorganischen Chemie, Vol. 1., Ferdinand Enke Verlag, Stuttgart, 1960, p. 336.
- 10 H. Gilman, W. Langham and F.W. Moore, J. Am. Chem. Soc., 62 (1940) 2327.